

LA-UR-21-30479

Approved for public release; distribution is unlimited.

DRiFT - Detector Response Function Toolkit Organic Scintillator and Gas Detector Capability Overview Title:

Author(s): Andrews, Madison Theresa

Intended for: Distribute to interested external users of DRiFT

Issued: 2021-10-21

DRiFT – Detector Response Function Toolkit Organic Scintillator and Gas Detector Capability Overview

Madison Andrews

XCP-7: Radiation Transport Applications, XCP Division, Madison@lanl.gov

DRiFT Contributors include: Cameron Bates, Edward McKigney, Austin Mullen, Surafel Woldegiorgis, Michael Rising, Matthew Marcath, Avneet Sood

DRIFT – A Brief Overview

- DRiFT post-processes MCNP output and simulates realistic nuclear instrumentation response.
- *Modular* easily accommodates new instrumentation and physics models
- Easy to use simple keyword input and one line execution, flexible ASCII write-out that can be post-processed.
- Capabilities: Organic Scintillators and Gas Detectors (primarily He-3).
- In this talk, features will not be described in detail, rather highlighted so you can get a feel for DRiFT capabilities.
- Split into four short sections: Overview, Scintillators, Gas Detectors, and Other Features.

Part I: DRiFT Overview

DRiFT Use and Input

- Required: MCNP output (PTRAC)
- Distribution
 - Executable for scintillators (new!)
 - HPC build for gas detectors
- Input file
 - Simple keywords for each module
- Output
 - Text file output
 - ROOT trees

```
[global]
modeltype=event
datasource=mcnp
ptrac type=bin
#Name of the PTRAC file you want to process
datafile=omcnp p
#datafile is the file name of the mcnp ptrac output
det cells=1
[SourceInformation]
call=SourceInformation
multi src=yes
[Scintillation]
call=Scintillation
detector=EJ301
optical transport=0.6
pmt type=9821B
voltage=1500
divider option=B
[Digitizer]
call=Digitizer
voltage range =2.0
digitizer samples=256
resolution=16384
ter res = 50
DC offset = 0.1
start point = 0.1
digitizer rate=500.e6
```

source_e (MeV)	NPS	det_pulse (MeVee)	det_{cell}	corr_count	time (s)	PSD cells_history
1.63259	71	0.133547	1	no	7.39562e-09	0.212628 2 1
1.814	354	0.255438	1	no	3.94077e-09	0.216505 2 1
3.29549	640	0.484216	1	no	3.26886e-09	0.234059 2 1
1.66616	763	0.105647	1	no	4.30608e-09	0.169014 2 1
0.879835	774	0.0920073	1	no	9.41205e-09	0.218329 2 1
2.02652	1001	0.440321	1	no	4.41343e-09	0.255421 2 1
2.76593	1016	0.606231	1	no	3.3331e-09	0.234813 2 1

Release – Creating a DRiFT Installer

- <u>A DRiFT executable installer is now available</u> to approved requesters.
- It contains the installer (drift-1.0.0-Linux.sh) and a README file with simple installation instructions for the user.

- In order to generate a Linux executable:
 - DRiFT dependencies on LANL's HPC cluster, ROOT, Garfield++ and MCNPTools builds were removed.
 - CPACK was used to generate a STGZ self-extracting installer
 - Remaining dependencies (HDF5 and GCC libraries) were statically linked
- The release contains 7 test suites / examples in addition to 3 unit tests.
 - The unit tests are automatically executed at the end of the install process, and compare the output of various internal DRiFT functions against archived values.

Documentation – Manual

DRiFT - RELEASE 1.0.0 ORGANIC SCINTILLATORS

DRIFT CONTRIBUTORS:

Madison Andrews*1, Cameron Bates1, Edward McKigney1 Austin Mullen1, Surafel Woldegiorgis1, Michael Rising2, Matthew Marcath1, and Avneet Sood1

> ¹XCP-7: Radiation Transport Applications ²XCP-3: Monte Carlo Codes X-Computational Physics Division Los Alamos National Laboratory *madison@lanl.gov

LAST UPDATED: SEPTEMBER 17, 2021
LOS ALAMOS NATIONAL LABORATORY TECHNICAL REPORT
LA-UR-21-29114

- Detailed 65 page manual was created with TED funds to accompany the DRiFT executable.
- The manual contains 12 chapters split into 4 parts:
 - DRiFT Overview
 - Detector Physics Scintillators
 - Additional DRiFT Features
 - Test Suites and Examples
- DRiFT executable and manual have been used by a friendly tester in nuclear safeguards in Q4 of FY21.

Generating Test Suites, Examples, and Unit Tests

- 2 existing test suites were cleaned up, and documented.
- 5 new test suites / examples were added for the release.
- Nuclear safeguards relevant examples include: correlated fission measurements, pile-up, cross talk, source activities, and comparisons of DRiFT with measurements (shown on left)
- Unit tests were developed to test code functionality upon installation.
- The 3 unit tests are automatically executed at the end of the installation process, and compare the output of various internal DRiFT functions against archived "truth" values generating using pre-determined inputs.

Part II: Organic Scintillators

Organic Scintillators in DRiFT

• There are two large components to organic scintillator simulations in DRiFT: scintillator (and PMT) response, and digitizer effects (i.e. the conversion of electrons to a digitized signal).

Expansion of Scintillator and PMT Physics Options

- Users can specify their own scintillator, PMT, and digitizer properties.
- Or, they can use models natively supported by DRiFT (17 scintillators, 13 PMTs, and 7 digitizer types).
- Additionally, the user can now add their own response without modifying source code.
 - The release contains instructions and examples.
 - Information required for users to "build their own" response is usually easily found on manufacturer's websites.

Name	Keywords	Options
[Scintillation]	-	
	call	Scintillation
	detector	Scintillator name, ej. EJ301
	optical_transport	double, default 0.6
	voltage	double, 1500 V, PMT voltage
	pmt_type	PMT name, i.e. 9821B
	max_energy	double, 25.0 MeV default
	gain	double, default set by PMT voltage and model
	scint_yield	double, default set by scintillator type
	PE_file	filename of scintillator emission spectrum
	QE_file	filename of PMT quantum efficiency spectrum
	light_file	filename of scintillator light output table
	pulse_shape_file	filename of user-defined pulse shape
	rise_time	double, rise time of the scintillator (in ns) for pulse shape
	decay_fast	double, fast decay time constant (in ns) for pulse shape
	decay_slow	double, slow decay time constant (in ns) for pulse shape
	fast_decay_weight	double, relative weight of fast decay time constant
	pulse_arrival_time	double, default 15 ns

Name	Keywords	Options
[Digitizer]		
	call	Digitizer
	digitizer_samples	int, 512
	resolution	int, 16384 default
	voltage_range	double, 2.0 V default
	ter_res	double, 50.0 ohm default
	DC_offset	double, 0.1 % default
	start_point	double, 0.1 by default
	trigger_ADC	int, 100 by default
	rate	double, 500.e6 default (Hz)
	s_gate	double, 22 e-9 by default (22 ns)
	1_gate	double, 90e-9 by default (90 ns)
	PSD	string, no by default
	pileup	string, no by default
	digitizer_type	string, none specified by default o

Accommodating User Defined Pulse Shapes

- One of the key useful and unique features of DRiFT is the ability to simulate digitizer electronic effects and pulses.
- Simulated pulse shapes have a wide variety of options from testing pulse shape discrimination (PSD) analysis to generating testing data for machine learning algorithms.
- Previously, only pulse shapes for EJ-301 scintillators were available.
- The code was expanded to accommodate user-defined pulses. An example of a PSD plot produced with this option is shown above.
- Users can define pulse shapes two ways: analytic equations or with an example measured pulse as drift input

Part III: Gas Detectors

Gas Detector – A new capability for DRiFT

• Substantial progress has been made on helium-3 gas detector simulation capabilities and the gas detector proof of concept as been demonstrated.

- Gas detector physics simulations necessitated output from many codes to create a DRiFT gas detector database (*users do not need to interact with these external codes*).
- COMSOL was used to model the tube electric fields in detail, these fields were imported into Garfield++ successfully.
 - Incorporates *field-tube (end-tube) effects*.
- An interface to Magboltz computes gas properties,
 SRIM generates proton and triton stopping and range tables.
- Many combinations of tube pressures, sizes, quench gas, temperatures, and voltages to generate data tables that are read by DRiFT.

Gas Detectors

- DRiFT account for decreases in detection efficiencies due to
 - Operating at lower voltages
 - The inactive tube area.
- Also added a pre-amplifier module compatible with both gas and semiconductor output, can give an estimate of *pile-up*, and photons misattributed as neutron events.

- Measurement sets to compare with DRiFT and MCNP would be appreciated if anyone has some relevant ones.
- Events can be discriminated based on energy deposited (like MCNP) or charge (more realistic).

Gas Options Implemented in DRiFT

Keyword	Description	Unit	Default	Options / Notes
Gas1/Gas2	Primary gas/quench gas		Helium-3/CO ₂	He-3, BF3,CO ₂ whatever gases are supported in Garfield++ (many),
Comp1/Comp	Composition of primary/secondary gas	Atom %	100	0 - 100
Voltage	Voltage applied to the tube	V	1600	1000 – 1900 V
Pressure	Gas tube pressure	Atm	10 atm	1, 2, 4, 10 atm
Aval	Model the electron transport in the tube		No	Yes, no
Inactive area	Include end tube effects		No	Yes, no in Phase I a COMSOL + GARIFLED++ generated file was required.
Inactive bottom/ top	Can describe the size of the inactive areas on the top and bottom	cm	0	With reserve funds we demonstrated that complex COMSOL models were not necessary, significantly increasing the flexibility of this feature.
LLD_c	Lower level discriminator -charge	С	0 C	\geq 0, also added this to the pre-amplifier model
LLD_e	Lower level discriminator - energy	MeV	0 MeV	\geq 0, also added this to the pre-amplifier model
Temperature	Temperature of the tube	K	293 K	Any
srim	Whether the tracks of the reaction products are modelled		Yes	Yes, No

Part IV: Other Features in DRiFT

Information of source particles leading to detection events

- P Correlation between source energies/emission probabilities and capture moments in MC15, with and without room return contributions.
- DRiFT enables the tracking of particles from source point to final termination in detectors, allowing calculation of source energy and emission probabilities corresponding to each detection event.
 - Using MCNPTools
 - Potential input for unfolding and analysis codes

Defining Source Activity in DRiFT

- Users can define the source activity levels and DRiFT will automatically sort the PTRAC events in time accordingly.
- This allows an estimation of pile-up effects at a large number of detector settings.
- Options demonstrated include, *pile-up*, *tube-end effects*, *collection time*, *energy thresholds and applied voltage*.
- Currently DRiFT assumes a non-paralyzable deadtime in the pre-amplifier module.

Flexible Output

- The executable version can write out text files with columns corresponding to user-specified outputs and rows, each detector event.
 - Can also output history of the particle (i.e. which cells in the MCNP file it interacted with).
- Additionally, users can output digitizer waveforms for scintillator simulations to assess their analysis algorithms.
- The HPC version also have the option to output DRiFT results as root trees.

Table 3.6: DRiFT Sections Keyword Options - WriteOutput

Name	Keywords	Options
[WriteOutput]		
	call	WriteOutput
	$num_outputs$	integer less than 10
	outputs	source_e (default), MeV
		source_t seconds
		source_cell
	→	source_type
		count
		det_pulse
		det_cell
		corr_count
		PSD

Conclusions and Future Work

- DRiFT simulates nuclear instrumentation in levels of detail not available in other codes.
- Allows users to assess tool performance and develop analysis algorithms (i.e. PSD).
- A DRiFT executable has been generated for Linux OS for organic scintillator capabilities.
- Gas detector proof of concept has been implemented.
- Future work:
 - Streamlining of gas detector simulation process
 - comparisons with He-3 measurements needed.
 - Implementation of pulse shapes in gas detectors

Acknowledgements

- LDRD MFR, TED Funds.
- We appreciate the contributions of measurements, information, feedback, testing, and MCNP decks from: J. Favorite, A. Madden, L. Misurek, M. Lombardi, K. Shults, M. James, T. Borgwardt, D. Broughton, S. Sarnoski, and M. Root.